Gaussian Mixture Model of Heart Rate Variability
نویسندگان
چکیده
Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters.
منابع مشابه
تغییرپذیری ضربان قلب Heart rate variability))
Abstract Many studies have been conducted on heart rate variability. Variability in the heart signal of two sequential beats is called heart rate variability (HRV). Short- and long- term variability reflects autonomic nervous system function, so that increased or decreased heart rate variability (HRV) is an indicator of human health. So, the analysis of these changes can predict sudden death...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملتغییرپذیری ضربان قلب Heart rate variability))
Abstract Many studies have been conducted on heart rate variability. Variability in the heart signal of two sequential beats is called heart rate variability (HRV). Short- and long- term variability reflects autonomic nervous system function, so that increased or decreased heart rate variability (HRV) is an indicator of human health. So, the analysis of these changes can predict sudden death...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کامل